Run Test
Tests
4x
4x
3/2+\frac{3}{2}=0
3/2+\frac{3}{2}=0
3/2-\frac{3}{2}=0
3/2-\frac{3}{2}=0
math.sin(x)+Math.cos(pi)-\tan{pi/2}
sin(x)+cos(pi)-\tan{pi/2}
Math.pow(x,2)=x**2=x^2=x^{2}
pow(x,2)=x^2=x^2=x^{2}
Math.tan(x)*Math.sec(x)*Math.csc(x)*Math.cot(\pi)
tan(x)*sec(x)*csc(x)*cot(π)
Math.PI+Math.E
π+e
\max(1,2)
max(1,2)
\pi^2
π^2
ε^21
ε^21
\Pi*\gamma
Π*γ
x=(-b\pm \sqrt(b^2-4*a*c))/2a
x=(-b±\sqrt(b^2-4*a*c))/2a
\sqrt[3]{x}
\sqrt{3,x}
cos(3pi)
cos(3pi)
\cos pi
\cospi
3+infinity!=7-\infty
3+∞≠7-∞
gcd(6,8)
gcd(6,8)
min(1+7,2*3,3+\csc x)+max(1,2)
min(1+7,2*3,3+\cscx)+max(1,2)
der(x^2+1,x)
der(x^2+1,x)
der(x^12+sin(x))=12x^11+cos(x)
der(x^12+sin(x))=12x^11+cos(x)
lim(t*sin(t),t,0,r)<=0
lim(t*sin(t),t,0,r)≤0
lim(x+sqrt(x),x,infinity)>=0
12%+23%=35%
12%+23%=35%
12%7=5
12%7=5
6!-5! = 600
6!-5!_=600
7 choose 3 = 7 comb 3 = comb(7,3) != 7 perm 3 = \perm(7,3)
7\comb3=7\comb3=comb(7,3)≠7\perm3=\perm(7,3)
3+\function(72*3)=1
3+\function(72*3)=1
\frac{2.3333}{3}+\frac{1}{x}=7
(2.3333)/(3)+(1)/(x)=7
\sqrt[3]{x^3-7}+sqrt[5]{x^3-8}-sqrt(3)+sqrt(x^3-7) in y
\sqrt{3,x^3-7}+\sqrt{5,x^3-8}-sqrt(3)+sqrt(x^3-7)∈y
log(3+7)+\log{3+7}+\log 3+\log_2 3+log_2(3+7)+log_[2]{3}+log_[2](3+7)+log[2]{3+7}+log2(3+7)+log_10{3+7}
log_{e}(3+7)+\log_{e}{3+7}+\log_{e}3+\log_23+log_2(3+7)+log_[2]{3}+log_[2](3+7)+log_[2]{3+7}+log_{2}(3+7)+log_{10}{3+7}
der(3x^12,x)=der(3x^12)=36x^11
der(3x^12,x)=der(3x^12)=36x^11
Math.round(x/7,2)+math.round(x/7)+round(13.244,i)
round(x/7,2)+round(x/7)+round(13.244,i)
Math.floor(x/7)+math.floor(x/7)+floor(-3.27)+⌊129/17⌋-\lfloor 129/7 \rfloor=y
floor(x/7)+floor(x/7)+floor(-3.27)+floor(129/17)-floor(129/7)=y
Math.ceil(x/7)+math.ceil(x/7)+ceil(2.9)-ceiling(-3.24)+⌈\sqrt[3]{8}⌉+\lceil sqrt(738)\rceil=y
ceil(x/7)+ceil(x/7)+ceil(2.9)-ceil(-3.24)+ceil(\sqrt{3,8})+ceil(sqrt(738))=y
int(x^2-1,x,0,infinity)+int(x^2-1,x)+int(x^2-1,0,infinity)+int(x^2-1)
int(x^2-1,x,0,∞)+int(x^2-1,x)+int(x^2-1,0,∞)+int(x^2-1)
loglog(x)+\log\log(x)+\log \log x = 7
loglog(x)+\loglog(x)+\loglogx=7
sum(i^2-17,i=0,infinity)!=product(i^2-17,i\in T)
sum(i^2-17,i=0,∞)≠prod(i^2-17,i∈T)
[[1,2],[3,4]]*[[5,6],[7,8]]=[[17,23],[39,53]]
[[1,2],[3,4]]*[[5,6],[7,8]]=[[17,23],[39,53]]
6! != 5!+6
6!_≠5!+6
\lim\limits_{t\to 0^+}{t\sin{t}}
lim(t*sin(t),t,0,r)≤0
\frac{\mathrm{d}}{\mathrm{d}x}[x^2+1]
der(x^2+1,x)
\int_{0}^{\infty} {x^2-1} \mathrm{d}{x}+\int {x^2-1} \mathrm{d}{x}
int(x^2-1,x,0,∞)+int(x^2-1,x)