Tests
4x

4x


3/2+\frac{3}{2}=0

3/2+\frac{3}{2}=0


3/2-\frac{3}{2}=0

3/2-\frac{3}{2}=0


math.sin(x)+Math.cos(pi)-\tan{pi/2}

sin(x)+cos(pi)-\tan{pi/2}


Math.pow(x,2)=x**2=x^2=x^{2}

pow(x,2)=x^2=x^2=x^{2}


Math.tan(x)*Math.sec(x)*Math.csc(x)*Math.cot(\pi)

tan(x)*sec(x)*csc(x)*cot(π)


Math.PI+Math.E

π+e


\max(1,2)

max(1,2)


\pi^2

π^2


ε^21

ε^21


\Pi*\gamma

Π*γ


x=(-b\pm \sqrt(b^2-4*a*c))/2a

x=(-b±\sqrt(b^2-4*a*c))/2a


\sqrt[3]{x}

\sqrt{3,x}


cos(3pi)

cos(3pi)


\cos pi

\cospi


3+infinity!=7-\infty

3+∞≠7-∞


gcd(6,8)

gcd(6,8)


min(1+7,2*3,3+\csc x)+max(1,2)

min(1+7,2*3,3+\cscx)+max(1,2)


der(x^2+1,x)

der(x^2+1,x)


der(x^12+sin(x))=12x^11+cos(x)

der(x^12+sin(x))=12x^11+cos(x)


lim(t*sin(t),t,0,r)<=0

lim(t*sin(t),t,0,r)≤0


lim(x+sqrt(x),x,infinity)>=0



12%+23%=35%

12%+23%=35%


12%7=5

12%7=5


6!-5! = 600

6!-5!_=600


7 choose 3 = 7 comb 3 = comb(7,3) != 7 perm 3 = \perm(7,3)

7\comb3=7\comb3=comb(7,3)≠7\perm3=\perm(7,3)


3+\function(72*3)=1

3+\function(72*3)=1


\frac{2.3333}{3}+\frac{1}{x}=7

(2.3333)/(3)+(1)/(x)=7


\sqrt[3]{x^3-7}+sqrt[5]{x^3-8}-sqrt(3)+sqrt(x^3-7) in y

\sqrt{3,x^3-7}+\sqrt{5,x^3-8}-sqrt(3)+sqrt(x^3-7)∈y


log(3+7)+\log{3+7}+\log 3+\log_2 3+log_2(3+7)+log_[2]{3}+log_[2](3+7)+log[2]{3+7}+log2(3+7)+log_10{3+7}

log_{e}(3+7)+\log_{e}{3+7}+\log_{e}3+\log_23+log_2(3+7)+log_[2]{3}+log_[2](3+7)+log_[2]{3+7}+log_{2}(3+7)+log_{10}{3+7}


der(3x^12,x)=der(3x^12)=36x^11

der(3x^12,x)=der(3x^12)=36x^11


Math.round(x/7,2)+math.round(x/7)+round(13.244,i)

round(x/7,2)+round(x/7)+round(13.244,i)


Math.floor(x/7)+math.floor(x/7)+floor(-3.27)+⌊129/17⌋-\lfloor 129/7 \rfloor=y

floor(x/7)+floor(x/7)+floor(-3.27)+floor(129/17)-floor(129/7)=y


Math.ceil(x/7)+math.ceil(x/7)+ceil(2.9)-ceiling(-3.24)+⌈\sqrt[3]{8}⌉+\lceil sqrt(738)\rceil=y

ceil(x/7)+ceil(x/7)+ceil(2.9)-ceil(-3.24)+ceil(\sqrt{3,8})+ceil(sqrt(738))=y


int(x^2-1,x,0,infinity)+int(x^2-1,x)+int(x^2-1,0,infinity)+int(x^2-1)

int(x^2-1,x,0,∞)+int(x^2-1,x)+int(x^2-1,0,∞)+int(x^2-1)


loglog(x)+\log\log(x)+\log \log x = 7

loglog(x)+\loglog(x)+\loglogx=7


sum(i^2-17,i=0,infinity)!=product(i^2-17,i\in T)

sum(i^2-17,i=0,∞)≠prod(i^2-17,i∈T)


[[1,2],[3,4]]*[[5,6],[7,8]]=[[17,23],[39,53]]

[[1,2],[3,4]]*[[5,6],[7,8]]=[[17,23],[39,53]]


6! != 5!+6

6!_≠5!+6


\lim\limits_{t\to 0^+}{t\sin{t}}

lim(t*sin(t),t,0,r)≤0


\frac{\mathrm{d}}{\mathrm{d}x}[x^2+1]

der(x^2+1,x)


\int_{0}^{\infty} {x^2-1} \mathrm{d}{x}+\int {x^2-1} \mathrm{d}{x}

int(x^2-1,x,0,∞)+int(x^2-1,x)